
NOE TS Fuzzy Modelling of Nonlinear Dynamic
Systems with Uncertainties using Symbolic

Interval-valued data

Salman Zaidia,∗, Andreas Krolla

aDepartment of Measurement and Control, Institute for System Analytics and Control,
Faculty of Mechanical Engineering, University of Kassel, Germany.

Abstract

A novel and generalized approach to Nonlinear Output Error (NOE) modelling

using Takagi-Sugeno (TS) fuzzy model for a class of nonlinear dynamic systems

having variability in their outputs, owing to the inherent stochasticity, external

disturbances and noise, is presented in this article. Assuming the identifica-

tion method can be repeated offline a number of times under similar conditions,

multiple input-output time series can be obtained from the underlying system.

These time series are pre-processed using the techniques of statistics and prob-

ability theory to generate the envelopes of response (curves outlining the upper

and lower extremes of response) at each time instant. Two types of envelopes

are proposed in this research: the max-min envelopes and the envelopes based

on the confidence intervals provided by extended Chebyshev’s inequality. By

incorporating interval data in fuzzy modelling and using the theory of symbolic

interval-valued data, a TS fuzzy model with interval antecedent and consequent

parameters is obtained. The proposed identification algorithm provides a model

for predicting the expected response as well as envelopes. It is demonstrated

on and validated for an academic simulation study and the real data obtained

from an electro-mechanical throttle valve.

Keywords: Nonlinear system identification; Fuzzy modelling; Uncertainty

∗Corresponding author
Email addresses: salman.zaidi@mrt.uni-kassel.de (Salman Zaidi),

andreas.kroll@mrt.uni-kassel.de (Andreas Kroll)

Preprint submitted to Elsevier May 2, 2016
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1. Introduction

1.1. Motivation and literature review

In systems and control theory, System Identification (SI) deals with build-

ing mathematical models of dynamic systems from measured input-output data.

The accuracy of the developed model is thus highly dependent upon the infor-5

mation content and the quality of data used for identification. The identification

is generally carried out in two steps. Firstly, a model structure is selected, and

then it is followed by parameter estimation. To date, several methodologies

have been successfully used for nonlinear dynamic system identification, such as

artificial neural networks [1, 2], piecewise affine systems [3, 4], Takagi-Sugeno10

(TS) fuzzy systems [5, 6, 7], the Kolmogorov-Gabor polynomial and the para-

metric Volterra-Series models [8], to name a few. This paper focuses on the TS

fuzzy modelling.

The fuzzy model obtained using classical techniques may not adequately rep-

resent the true system, on account of different uncertainties, owing to factors15

such as limited physical insight, unrealistic assumptions, limited quantity and

quality of available data, and/or limited model complexity for control-oriented

modelling. Consequently, it would be advantageous to have the information

on the uncertainty in the model outputs besides a predicted or most likely

response. Conventional fuzzy systems lack the ability to effectively handle un-20

certainties originated during modelling. Typically, ordinary or so-called type-1

fuzzy sets (T1 FSs) and a deterministic rule base are used in such systems,

whose crisp membership values make them incapable of handling uncertainties.

Mendel [9, 10] suggested to use Type-2 Fuzzy Logic Systems (T2 FLSs), which

was originally proposed by Zadeh [11]. T2 FLSs use Type-2 Fuzzy Sets (T225

FSs), in order to permit an uncertainty handling capability of fuzzy systems.

In [9, 12, 13, 14, 15, 16], it has been demonstrated that T2 FSs show superior

performance (in terms of robustness and error reduction) in the presence of

2



large uncertainties as compared to their counterpart T1 FSs. T2 FSs not only

provide a crisp output at the end but also an uncertainty description as addi-30

tional information, in terms of a type reduced set. The main drawback is the

increased computational complexity, especially in type reduction, and the lack of

systematic design approach to model effectively uncertainties in the secondary

membership function of T2 FSs. Inspired by the T2 FLS, the Probabilistic

Fuzzy Logic System (PFLS) [17, 18] was proposed, which is different from the35

TS FLS in that it uses the probability density function (PDF) in its secondary

membership function. The PFLS has the capability of modelling a system with

stochastic uncertainties because of probabilistic fuzzy sets as secondary fuzzy

sets. The output of the PFLS is a random variable with a certain PDF which ac-

tually provides a measure of stochastic uncertainty associated with the output.40

However, the criterion for determining the probability density of primary mem-

bership function values reflecting true uncertainties in data is not clear to date.

The prediction interval based T2 FLS was proposed in [19, 20]. The main moti-

vation was to build a model whose response should be associated with the quality

tag or confidence measure. In that method, both the validity and informative-45

ness measures were incorporated into the non-continuous and non-differentiable

objective function, which was later optimized by a meta-heuristic algorithm.

Moreover, the model has no ability to incorporate the inherent stochasticity in

the system dynamics.

The aforementioned fuzzy systems use crisp input-output data in which each50

data point is described by a crisp single-valued number. However, in many

stochastic scenarios, the data cannot be pinned down to single-valued numbers

due to the presence of uncertainties in the system. One of the possibilities to

represent such form of data is to use intervals, possibly associated with weights

or probability density function, and deal with them using the theory of Sym-55

bolic Data Analysis (SDA) [21, 22]. In the field of fuzzy modelling, only few

articles discuss modelling using the interval data. One of the such earliest at-

tempts include the INterval FUzzy MOdel (INFUMO) [23, 24]. The upper and

lower bounds of response were obtained by first considering all possible extreme
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variations of parameters of the modelled function, which gave rise to a family60

of functions, and then selecting the minimum and maximum functions out of

that family. These bounds were then approximated independently using the

technique of linear programming. In this method, the estimated consequent pa-

rameters were in the form of intervals, whereas the antecedent parameters were

crisp. This limitation was overcome by the model proposed by Xu and Sun65

[25, 26]. They proposed an interval TS fuzzy model in which they used the in-

terval arithmetic to estimate interval consequent parameters. The method starts

with the partitioning of the input space by clustering separately the centre and

half range values of the antecedent variables. Later, these two memberships

are combined using the T-norm operator. For estimating the consequent pa-70

rameters, they used the interval regression analysis which resulted in interval

consequent parameters. They developed a model for the case of crisp input and

interval output. Only the case of one step ahead prediction or Nonlinear Auto

Regressive with eXogenous inputs (NARX) was discussed in their approach. By

simulating all possible combinations of upper and lower bounds of parameters,75

an interval response was obtained which actually provide the extreme values

of the response. However, in system identification, a model is estimated only

from input-output data, and thus these interval parameters are not known be-

forehand. In addition, the model is often required to be derived for the case of

recursive evaluation or the NOE case for applications like simulation or model80

predictive control.

1.2. Scope of this research

This article is an extended and comprehensive version of the previous re-

search of the authors [27, 28, 29] with a clear presentation of developed methods,

some comparisons and guidelines, introduction of improved mathematical nota-85

tions, demonstration of the developed method on an artificial dynamic system

and the possible future research directions. A second order single-input-single-

output (SISO) nonlinear system with artificially added uncertainty is chosen for

demonstrating the developed method in an easy-to-understand way. The key
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reason for this example is that a known system permits to better access the90

performance and results of the developed methodology. The main contribution

in this research is endowing the classical Nonlinear Output Error (NOE) TS

fuzzy modelling with the stochastic theory and the symbolic data analysis for

the first time, making it possible to deal with systems having stochastic vari-

ations in its output. In the previous research, we first introduced the idea of95

using the sample-wise max-min bounds as the measure of spread of output time

series at each time instant [27]. Two independent TS fuzzy models were iden-

tified separately for estimating the max-min bounds of the output time series

(so-called envelopes of the response) for the NOE case. The main drawbacks

of using max-min bounds include sheer conservativeness, least robust statistics100

in the presence of outliers, and the fact that a minimum or maximum value of

a distribution may not be defined. Subsequently, the approach was enhanced

to include the probabilistic bounds using the probability theory in our previous

work [28]. The approach assumes that the mathematical expectation is the best

point estimate at any given instant of the output sample and uses the fact that105

the expectation is the arithmetic mean of the random variable coming from

any probability distribution. The spread of the distribution is captured using

Chebyshev’s inequality. The advantage of using this inequality is that it makes

no assumption about the distribution and thus assumptions like normality or

symmetry etc. are not required. However, this comes with the drawback of ex-110

treme conservativeness of the obtained bounds. The drawback can be avoided

by using the information of the actual distribution; for instance, if the distribu-

tion is known to be normal, its coverage factor can be used to obtain realistic

bounds. Assuming the general case of any arbitrary distribution with math-

ematical expectation as the best point estimator, the method estimates the115

expected value of the response at each time instant as well as the upper and

lower bounds based on the (1 − α)100% (α is usually called the “significance

level”) confidence intervals (CI) using extended Chebyshev’s inequality ([30])

for the finite sample size [31]. Two independent fuzzy models were trained sep-

arately for estimating the upper and lower envelopes of response for the NOE120
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case. The expected value is estimated by averaging the response of these two

models as permitted by the structure of the Chebyshev’s inequality.

The method had the drawback of using two independent TS fuzzy models

for the CI based envelopes. In the latest work in [29], instead of using two

separate models for envelopes, interval data was directly used in TS modelling125

to build a single TS model with interval antecedent and consequent parameters.

In this article, the developed model is referred to the interval-data based type-1

TS fuzzy model. The modelling procedure uses Fuzzy C-Means clustering for

the symbolic interval-valued data by optimizing an adequacy criterion based on

suitable squared Euclidean distances between vectors of intervals [32]. As the130

result of this clustering, cluster prototypes are obtained in the form of intervals.

The parameters of the local model are then estimated using the centre and

range method suitable for the symbolic interval data ([33]). The model is first

estimated for the NARX case and initial values of antecedent and consequent

parameters are determined. These initial values are then passed to a nonlinear135

optimization algorithm to get the parameters of the NOE model.

For demonstrating the effectiveness of the proposed approach, two examples

are presented in this article. One of them is an electro-mechanical throttle,

which is defined as an experimental benchmark nonlinear stochastic dynamic

system in [34]. The motivation behind choosing this test case is that the ob-140

served output time series have shown considerable variation when the same

input signal applied in a series of experiments. This variability occurs because

of different phenomena including friction, nonlinear spring characteristic, and

manufacturing imperfections. As a result of experiment repetition, a family

(band) of output time series is obtained due to the inherent stochasticity in145

the system. The second example is a nonlinear dynamic benchmark system

described by the second order difference equation [35]. This system is made

stochastic by randomizing the output signal. Five random variables of known

distributions are added to the output signal at each time instant for achieving

randomness. The rest of this article is structured as follows. First, the problem150

statement is formally and mathematically formulated in Sec. 2. The gist of this
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research lies in the proposed identification approach described in detail in Sec. 3.

Next, the experimental and simulation results are recorded in Sec. 4. Finally, a

brief conclusion of the current work and an outlook of the future work are given

in Sec. 5.155

2. Problem statement

The notations used in this article have been organized as follows. The normal

lower case (e.g. y), bold lower case (e.g. y) and normal upper case (e.g. Y ) letters

are used to denote scalars, vectors and matrices, respectively. Additionally,

deterministic and random variables are distinguished by the roman italic (e.g.

y) and san-serif (e.g. y) letters, respectively. Furthermore, an interval variable is

represented by a tilde accent mark (e.g. ỹ) in order to distinguish it from a crisp

variable. For the ease of illustration, consider the case of a discrete time Single-

Input-Single-Output (SISO) dynamic system having variability in its output

given by (1). The extension of the SISO to the Multiple-Input-Single-Output

(MISO) case is straightforward. Moreover, a Multiple-Input-Multiple-Output

(MIMO) system can be thought of being composed of several MISO systems.

Supported by the fact that very often the input signal has no uncertainty in

practice, the input signal is assumed to be exactly reproducible and thus treated

as a deterministic sequence. The system is mathematically described as follows

yk = F(xk) + ζk, k = 1, · · · , N (1)

where,

– k andN denote respectively the time index and the number of observations

– yk is a scalar stochastic dependent signal (output/regressent)

– xk is a vector stochastic independent quantity (regressor) consisting of160

lagged values of input (deterministic) and output (stochastic) signals, i.e.,

xk = [yk−1, . . . , yk−ny , uk−τ−1, . . . , uk−τ−ny ]ᵀ, where ny, τ and nu rep-
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resent the number of lagged output samples, dead time and number of

lagged input samples, respectively.

– F(·) is a stochastic function165

– ζk is additive noise with zero mean and finite variance

F(xk) and ζk are assumed to be independent of each other. The underly-

ing process can be viewed as M realizations of a stochastic process. y =

[y1, . . . , yk, . . . , yN] is defined on some probability space (Ω,B,Pr), where Ω is

the sample space, B is the Borel sigma-algebra, and Pr is a probability measure.170

Each yk is assumed to be stationary. The i.i.d. (independent and identically

distributed) assumption about yk is made by considering the fact that each

experiment can be performed independently of each other. However, the com-

ponents of the random vector y are dependent upon each other through the

tapped delay lines of inputs and outputs defined by the system dynamics. Con-175

ditional densities p(yk|yk−1, . . . , yk−ny , u(k − τ − 1), . . . , u(k − τ − nu)) can be

estimated for each instant k. To check the nature of the distribution followed by

yk, the histogram of output values at each time instant can be plotted for visual

inspection. As a particular case of normality, the distribution can be tested by

statistical techniques, such as Shapiro-Wilk (SW), Kolmogorov-Smirnov (KS),180

Anderson-Darling (AD) or Lillifors (LF) test, see [36] and the references therein

for details and comparisons. This information can then later be used to choose

a realistic coverage factor for determining the envelopes of a response.

The expected value (E(·)) of yk in Eq. (1) is given by

y(k) = E(yk) = E(F(xk)) := f(k) (2)

The variance (σ(·)) of yk in Eq. (1) can be calculated by the variance sum185

law

σ2
yk = σ2

F(xk)
+ σ2

ζk
(3)
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where σζk can be estimated experimentally by repeated measurements while

holding the inputs constant. For a stochastic system with considerably low

measurement noise as compared to its inherent stochasticity, the variance due to

stochasticity is significantly greater than the variance of noise, i.e. σζk � σF(xk),190

which leads to σyk u σF(xk).

The task is to estimate a model that describes the expected response of

the considered stochastic dynamics (f(k)) in (2)) and provides the envelopes

(worst-case and probability based) of response.

3. Identification approach195

The proposed identification approach is divided into following steps

3.1. Design of Experiment

The Design of Experiment (DOE) is the first step for estimating a data-

driven model. Therefore, the quality of the developed model heavily depends

upon the data used for identification. The input signal should be persistently200

exciting to be able to excite all the amplitudes and frequency modes of interest

[37]. For capturing the stochasticity, the experiment is repeated multiple times

to generate multiple time series for identification. A single time series in this

case can be considered as one realization of the underlying stochastic dynamic

system.205

3.2. Determination of Output Envelopes

The data used for identification can be lumped together in a matrix Z =

[u, Y ] ∈ RN×(M+1); where u ∈ RN and Y ∈ RN×M are, respectively, the input

vector and the output matrix; N and M denote the length of one experiment

and the total number of experiments, respectively. The same input signal is

used in M experiments and thus it is represented by a single vector of values,
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i.e. u. The output matrix is given by (4)

Y =


y11 y21 . . . yM−11 yM1

y12 y22 . . . yM−12 yM2
...

...
. . .

...
...

y1N y2N . . . yM−1N yMN

 =


y1

y2
...

yN

 . (4)

In this matrix, each column represents the output of an independent experiment,

whereas each row represents the output of each experiment at a given time

instant. Given a sample k, the corresponding row of the output matrix can

be seen as M realizations of the stochastic output variable yk at that sampling

instant following a certain probability distribution function conditioned by past

lagged output and input values, i.e.

Pr(yk|yk−1, . . . , yk−ny , uk−τ−1, . . . , uk−τ−nu). (5)

For tractability, only the upper and lower output boundaries or envelopes are

considered for identification. Two types of envelopes are considered in the fol-

lowing: the max-min and confidence interval based envelopes.

For max-min envelopes, the maximum and minimum values of yk are con-210

sidered to be the observed maximum ymax
k and the observed minimum ymin

k as

follows:

ymax
k = max

j

(
yjk

)
, (6) ymin

k = min
j

(
yjk

)
. (7)

The approach of max-min envelopes has, however, some serious limitations.

First, it does not provide the expected response, as the average of these bounds215

doesn’t represent the expected response but rather the mid-value of the max-

min envelopes. Secondly, the sample maximum and minimum statistics are

considered to be the least robust statistics due to their sensitivity to outliers in

the data. Thirdly, the true extreme values of the distribution where the data is

originating from may not even exist (e.g. it may be extended from −∞ to +∞).220

Lastly, the max-min values may depend heavily on the given sample especially

when the sample size is small.

An alternative and more reliable approach is to use probability theory and

calculate the envelopes of the responses based on the upper and lower confidence
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bounds of yk around its mean. In case of a distribution of known type, the con-

fidence bounds around the mean can be calculated by adding and subtracting

some coverage factor kcov times the standard deviation to the mean value. For

instance, the coverage factor in case of a normal distribution for 95% confidence

level is kcov = 1.96. However, in many practical situations, the distribution may

deviate from the normal distribution significantly and thus using the coverage

factor for the normal distribution can be misleading. In general the distribution

of yk can have any shape. Chebyshev’s inequality provides the coverage factor

for the most general case, i.e. a distribution of any kind (whether unimodal or

multi-modal, symmetric or asymmetric etc.). The main drawback is the con-

servativeness of the obtained bounds because of not making any assumption

and not utilizing the data distribution. On the other hand, the advantage is

that the obtained bound guarantee that no more than 1/k2cov of values of a ran-

dom variable yk of any arbitrary distribution can be farther than kcov standard

deviations (σk) from the mean (µk), where kcov ≥ 1 [30]. Mathematically,

Pr(|yk − µk| ≥ kcov σk) ≤ 1

k2cov
, k = 1, . . . N. (8)

Chebyshev’s inequality assumes that the true value of the population mean

and standard deviation are known, whereas in the practical world, where the

experimental data comes from a complex stochastic system, this is often not the

case. Providing the sample size is large enough, the sample mean and standard

deviation can be reasonably estimated by the population mean and standard

deviation. Kaban ([31]) provided the approximated Chebyshev’s inequality in

terms of sample parameters as follows:

Pr(|yk −myk | ≥ kcov syk) ≤ 1√
M(M+1)

(
M−1
k2cov

+ 1
)
, (9)

where myk and syk are the sample mean and standard deviation at the k-th

time instant, respectively, given as follows:

myk =
1

M

M∑
j=1

yjk, (10) syk =

√√√√ 1

M − 1

M∑
j=1

(yjk −myk)2. (11)

From (9), (1− α)100% envelopes based on the confidence bounds of yk are de-

termined in the form of the interval [
¯
yk, ȳk], where the bounds are approximated
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as

¯
yk = myk − syk

√
M − 1

α
√
M(M + 1)

, (12)

ȳk = myk + syk

√
M − 1

α
√
M(M + 1)

. (13)

By averaging the bounds in (13), the expected response is obtained:

yexpk := myk = 0.5(
¯
yk + ȳk) (14)

3.3. Data generation for Identification

Let ỹk = [
¯
yk, ȳk] ∈ = = {[a, b] : a, b ∈ R, a ≤ b} (k = 1, . . . , N) represent the

interval-valued output at each sampling instant k. The input-output data pairs225

are collected in Z̃ = {(uk, ỹk)}k=1,...,N which will be used for the identification of

the TS fuzzy model using symbolic interval-valued data. The input-output data

pairs for the expected values are stored in Zexp = {(uk, yexpk )}k=1,...,N , which

will be used for evaluating the modelling performance for the expected response.

In order to avoid the phenomenon of overfitting of the developed model, the data230

is split into two parts, namely the identification and the validation dataset.

3.4. Model structure

The i-th rule of a TS fuzzy model with c rules having antecedents defined

by multidimensional reference fuzzy sets [6] and consequents by affine functions

for the SISO and MISO cases is given by:

Ri : IF z IS vi THEN ŷi(x) = aᵀ
i · [1 xᵀ]

ᵀ
, (15)

where:

Ri: i-th fuzzy rule,

z: antecedent variable, z ∈ Rrant ,

vi: i-th cluster prototype, vi ∈ Rrant ,

ŷi(x): crisp output of the i-th rule, ŷi(x) ∈ R,

ai: consequent parameters, ai ∈ Rrcon+1,

x: consequent variable, x ∈ Rrcon .
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In this classical type-1 TS fuzzy model, the cluster prototypes vi and the235

consequent parameters ai are defined as crisp numbers. The final crisp output

of the model is given by the weighted average of all ŷi’s:

ŷ(x, z) =

c∑
i=1

µi(z) · ŷi(x), (16)

where µi(z) ∈ [0, 1] is the membership of the scheduling variable z defined by

the orthogonal membership function of Fuzzy c-Means clustering (FCM) [38]:

µi(z,vi|i=1,...,c) =

 c∑
j=1

( ||z− vi||
||z− vj ||

) 2
ν−1

−1 , ∀ i, (17)

where ν is the fuzziness parameter, ν > 1. Since the membership functions240

defined by (17) are orthogonal,
c∑
i=1

µi(z) = 1 holds. In case of NARX nonlinear

dynamic systems, z and x are chosen as the vectors of lagged inputs and mea-

sured outputs. In general, the components of z can be different from x or they

can even be a function of those components.

On account of using symbolic interval-valued output in this research for

dynamic system identification, x, z, and ŷi all become intervals (i.e. interval

variables x̃, z̃, and ˆ̃yi, respectively). In the proposed modelling approach, the i-

th rule of the TS fuzzy model is characterized by interval consequent parameters

and multivariate fuzzy sets with interval prototypes. The overall model is given

by:

Ri : IF z̃ IS ṽi THEN ˆ̃yi(x̃) = ãᵀ
i [1 x̃ᵀ]

ᵀ
, (18)

ˆ̃y(x̃, z̃) =

c∑
i=1

µi(z̃) · ˆ̃yi(x̃), (19)

where µi(z̃) ∈ [0, 1] is the crisp membership value of the interval scheduling245

variable (z̃). Since the membership function is orthogonal,
∑c
i=1 µi(z̃) = 1. In

this model, the interval data is first clustered using the Fuzzy c-means clus-

tering for symbolic interval-valued data (here referred to as IFCM) [32]. It is

followed by parameter estimation of the local models using the centre and range

method which is suitable for symbolic interval data [33]. After a NARX model250
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is estimated, a non-linear optimization technique is applied to derive an optimal

model for the NOE case.

In order to conceptually compare this model with the other possible alter-

native modelling frameworks, a visual comparison of the models, with respect

to the antecedent and consequent structures and the input & output of the

model, is illustrated in Fig. 1. Since only dynamic system identification is ad-

Type
of TS
FM

Antecedent Space Output Space Input & Output

CDB
T1

z1

z 2

vi µi = 0.5 (z1, z2)

x1 x2

ŷi

ŷi = aᵀ · [1 xᵀ]ᵀ

0 0.5 1

u
(k

)

-1

0

1

ŷ
(k

)

crisp output
(no uncertainty)

CDB
IT2

z1

z 2

ṽi µ̃i = 0.5 (z1, z2)

x1 x2

ˆ̃yi

ˆ̃yi = ãᵀ · [1 xᵀ]ᵀ

ŷi = 0.5 · (ȳi +
¯
yi)
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u
(k
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-1

0

1

ŷ
(k
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IDB
T1

~z1

~z 2

ṽi µi = 0.5 (z̃1, z̃2)

x̃1 x̃2

ˆ̃yi

ˆ̃yi = ãᵀ · [1 x̃ᵀ]ᵀ

0 0.5 1

u
(k

)

-1

0

1

~̂y
(k

)

interval output
(no uncertainty)

IDB
IT2

~z1

~z 2

ṽi µ̃i = 0.5 (z̃1, z̃2)

x̃1 x̃2

ˆ̃yi

ˆ̃yi = ãᵀ · [1 x̃ᵀ]ᵀ

0 0.5 1

u
(k

)

-1

0

1

~̂y
(k

)

interval output with
bounded uncertainty

Figure 1: Visual comparison between alternate modelling frameworks
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dressed in this article, the antecedent (z or z̃) and consequent (x or x̃) variables

consist of the function of lagged inputs and measured (NARX model) or pro-

cess (NOE model) outputs. If the NOE model is considered, an example of

these variables is z(k) = [u(k − 1), ŷ(k − 1)]ᵀ, x(k) = [u(k − 1), ŷ(k − 1)]ᵀ for

the case of crisp input and crisp output; whereas z̃(k) = [u(k − 1), ˆ̃y(k − 1)]ᵀ,

x̃(k) = [u(k − 1), ˆ̃y(k − 1)] for the case of crisp input and interval output. The

input signal shown in Fig. 1 is crisp in nature; however, it should not be restric-

tive, as the modelling procedure remains the same for the interval input. For

the ease of illustration, the MF values are plotted only for the value of 0.5. The

value of fuzziness parameter ν = 2 was selected so that the membership lines

(shown in different colours) of each fuzzy set have some distance or gap between

them. As ν → 1, these membership lines seems to overlap each other. The first

of these models is the multi-dimensional reference fuzzy set based fuzzy model

presented in [6], and here it is called as the Crisp-Data Based (CDB) Type-1

(T1) TS Fuzzy Model (FM). This model is called CDB because it uses crisp data

(input and output) for model estimation. This is the classical case, in which the

modal has no uncertainty in membership functions and local model parameters.

To add the uncertainty handling capability to the classical FM, interval fuzzy

membership functions and interval local model parameters are utilized in the

CDB Interval Type-2 (IT2) TS FM, resulting in interval bound with bounded

uncertainty (so-called typed-reduced set). When there is stochasticity in the

dynamic system to be modelled, the output of such a system can be represented

in the form of intervals. The last two models, i.e. the Interval-Data Based

(IDB) T1 TS FM, and the IDB IT2 TS FM can be used for modelling such

systems with interval data. Mathematically, these models are described for the
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Multiple-Input-Single-Output (MISO) case as follows:

CDB T1 TS FM: ŷ(x, z) =
c∑
i=1

µi(vi|v1,...,vc , z) {aᵀ
i [1 xᵀ]

ᵀ} ,

CDB IT2 TS FM: ˆ̃y(x, z) =
c∑
i=1

µ̃i(ṽi|ṽ1,...,ṽc , z) {ãᵀ
i [1 xᵀ]

ᵀ} ,

IDB T1 TS FM: ˆ̃y(x̃, z̃) =
c∑
i=1

µi(ṽi|ṽ1,...,ṽc , z̃) {ãᵀ
i [1 x̃ᵀ]

ᵀ} ,

IDB IT2 TS FM: ˆ̃y(x̃, z̃) =
c∑
i=1

µ̃i(ṽi|ṽ1,...,ṽc , z̃) {ãᵀ
i [1 x̃ᵀ]

ᵀ} .

(20)

As seen from the Fig. 1 and Eq. (20), these model descriptions differ from one

another depending upon the crisp or interval nature of data or parameters. Of

all these models, the IDB IT2 TS FM, is the most general one. It uses interval255

data for modelling and incorporates bounded uncertainty in interval cluster

prototypes and local model parameters. The output of this model is in the form

uncertain interval with bounded uncertainty. Since only the IDB T1 TS FM

is discussed in this article, the details of the steps required for estimating this

model from the interval data are given in the sequel.260

3.5. Partitioning of the antecedent space

The antecedent variable z̃(k) which actually contains both the point-valued

data (input values) and the symbolic interval-valued data (response) is clustered

using IFCM. Since a point-valued data can be seen as a special case of interval-

valued data, z̃(k) is dealt with the theory of symbolic interval-valued data.265

The IFCM clustering furnishes the fuzzy partitioning of the space of z̃(k) and

provides interval prototypes. A brief description of this method is given below,

see [32] and the references therein for details.

Let the symbolic interval-valued data to be clustered be given by z̃(k) =

(z̃1(k), . . . , z̃rant(k)), k = 1, . . . , N ; where z̃j(k) = [ajk, b
j
k] ∈ = = {[a, b] : a, b ∈270

R, a ≤ b}, j = 1, 2, . . . , rant. Let each prototype ṽi of cluster P̃i be represented

as a vector of intervals, i.e. ṽi = (ṽi1, . . . , ṽ
i
rant), i = 1, . . . , c, where ṽij =

[αji , β
j
i ] ∈ = = {[α, β] : α, β ∈ R, α ≤ β}, j = 1, 2, . . . , rant. Let ν ∈ R be
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the fuzziness parameter. The IFCM minimizes the adequacy criterion based on

suitable squared Euclidean distances between vectors of intervals as follows:275

W =
c∑
i=1

N∑
k=1

µνi (z̃(k))
rant∑
j=1

[
(ajk − α

j
i )

2 + (bjk − β
j
i )

2
]
. (21)

As the standard FCM, the IFCM algorithm starts with the random initializa-

tion of either the cluster prototypes or partition matrix, and then subsequently

iterates between the representation and allocation steps. In the representation

step, the clustering prototypes are updated as follows:

αji =

N∑
k=1

µνi (z̃(k))ajk

N∑
k=1

µνi (z̃(k))

and βji =

N∑
k=1

µνi (z̃(k))bjk

N∑
k=1

µνi (z̃(k))

. (22)

In the allocation step, the values of membership function are updated ac-

cording to:

µi(z̃(k)) =

∑c
h=1

 rant∑
j=1

[(ajk−α
j
i )

2+(bjk−β
j
i )

2]
rant∑
j=1

[(ajk−α
j
h)

2+(bjk−β
j
h)

2]


1

ν−1

−1

. (23)

The IFCM algorithm has similar convergence properties to the standard280

FCM algorithm.

3.6. Estimation of the local modal parameters

The centre and range method [33] is used for this purpose. The method

applies the weighted linear regression on mid-points (centres) and ranges of the

interval valued consequent variable x̃(k), which can later be used for determining285

the output ˜̂y(k).

Let the consequent variable x̃(k) be written as x̃(k) = (x̃1(k), . . . , x̃rcon(k))

with x̃j(k) = [cjk, d
j
k] ∈ = = {[c, d] : c, d ∈ R, c ≤ d}, j = 1, . . . , rcon and

k = 1, . . . , N . Further assume that xcen(k) = (xcen1 (k), . . . , xcenrcon(k)), where

xcenj (k) = 0.5(cjk + djk) and xhr(k) = (xhr1 (k), . . . , xhrrcon(k)), where xhrj (k) =

17



0.5(djk−c
j
k); j = 1, . . . , rcon and k = 1, . . . , N , represent the centre (cen) and half

range (hr) values of x̃(k). Let the consequent parameters of the i-th rule (the pa-

rameters of the i-th local affine model) be represented as ãi = (ãi0, ã
i
1, . . . , ã

i
rcon),

where ãij = [γji , δ
j
i ] ∈ = = {[γ, δ] : γ, δ ∈ R, γ ≤ δ}, with j = 0, 1, . . . , rcon

and i = 1, . . . , c. Moreover, assume acen
i = (ai,cen0 , ai,cen1 , . . . , ai,cenrcon ), where

ai,cenj = 0.5(γji +δji ) and ahr
i = (ai,hr0 , ai,hr1 , . . . , ai,hrrcon), where ai,hrj = 0.5(δji −γji ),

j = 0, 1, . . . , rcon and i = 1, . . . , c, represent the centre (cen) and half range

(hr) values of ãi. The vectors lumping all the centre and half range conse-

quent parameters are given by acen = [(acen
1 )ᵀ, . . . , (acen

c )ᵀ]ᵀ ∈ R(rcon+1)c, where

acen
i ∈ R(rcon+1), i = 1, . . . , c and ahr = [(ahr

1 )ᵀ, . . . , (ahr
c )ᵀ]ᵀ ∈ R(rcon+1)c, where

ahr
i ∈ R(rcon+1), i = 1, . . . , c. These vectors are estimated globally by using

the Ordinary Least Squares (OLS) method (for the NARX model). Denote

Mi ∈ RN×N , the diagonal matrix having membership grades µi(z̃(k)) as its

k-th diagonal element with 1 ≤ i ≤ c and 1 ≤ k ≤ N . Define the matrices

Xcen
e := [Xcen,1] ∈ RN×(rcon+1), (24)

Xhr
e := [Xhr,1] ∈ RN×(rcon+1), (25)

where 1 is a unitary column vector in Rn, Xcen and Xhr are the input matrices

for the centre and radius consequent part, respectively.

Xcen := [xcen(1), . . . ,xcen(n)]ᵀ ∈ RN×rcon , (26)

Xhr := [xhr(1), . . . ,xhr(n)]ᵀ ∈ RN×rcon . (27)

Moreover, define

Xcen
E := [M1X

cen
e , . . . ,McX

cen
e ] ∈ RN×(rcon+1)c, (28)

Xhr
E := [M1X

hr
e , . . . ,McX

hr
e ] ∈ RN×(rcon+1)c. (29)

The reference interval output is defined as ỹ = (ỹ(1), . . . , ỹ(N)), with ỹ(k) =

[
¯
y, ȳ] ∈ = = {[a, b] : a, b ∈ R, a ≤ b}, k = 1, . . . , N . The centre and half

range values of ỹ(k) are defined in the same way: ycen = (ycen(1), . . . , ycen(N))

with ycen(k) = 0.5(
¯
y(k) + ȳ(k)), and yhr = (yhr(1), . . . , yhr(N)) with yhr(k) =290
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(ȳ(k)−
¯
y(k)), k = 1, . . . , N . The centre and half range values of the parameters

of the local models acen and ahr are calculated as

acen = [(Xcen
E )ᵀXcen

E ]−1(Xcen
E )ᵀycen, (30)

ahr = [(Xhr
E )ᵀXhr

E ]−1(Xhr
E )ᵀyhr. (31)

3.7. Determination of NOE model

The NOE or Recursive evaluation based prediction model is advantageous

for applications like model predictive control or simulation/prognosis ([39]). The295

cluster prototypes and local model parameters can be optimized for the NOE

case. In this case, the parameters obtained for the NARX model are used as

the initial parameters for the NOE model and nonlinear optimization is applied

to estimate optimal parameters for the NOE case.

The centre and half range of the cluster prototypes g̃ = (g̃1, . . . , g̃c)300

are defined as gcen = [(g
cen
1 )ᵀ, . . . , (gcen

c ))ᵀ] ∈ Rcrant , where gcen
i ∈ Rrant ;

and ghr = [(g
hr
1 )ᵀ, . . . , (ghr

c ))ᵀ] ∈ Rcrant , where ghr
i ∈ Rrant ; i = 1, . . . , c.

Denoting the lumped parameter vector of a NARX model as θNARX :=

[(gcen)ᵀ, (ghr)ᵀ, (acen)ᵀ, (ahr)ᵀ]ᵀ, with θNARX ∈ R2c(rant+rcon+1), the optimal set

of parameters for the NOE model θNOE is obtained by the minimizing the mean305

quadratic prediction error of the NOE model for ỹ = [
¯
y, ȳ]:

θNOE := θ∗ = arg min
θ

1

N

N∑
k=1

(ȳ(k)− ˆ̄yNOE(θ, k))2+

(
¯
y(k)− ˆ

¯
y

NOE
(θ, k))2. (32)

In this research, the Matlab function lsqnonlin is used for solving the opti-

mization problem in (32). This function uses a trust-region-reflective algorithm

based on the interior-reflective Newton method [40, 41].

3.8. Model assessment criteria310

Once the model has been developed its performance and validity are as-

sessed. The three time series: the expected response, the output upper and
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lower bound time series are assessed separately. Denoting y(k) and ŷ(k) as

the reference and the model output respectively, the model quality is assessed

using Variance Accounted For (VAF), Root-Mean-Square Error (RMSE) and315

Maximum Absolute Error (MaxAE) [35]:

VAF =

(
1− var (y − ŷ)

var (y)

)
100%, (33)

var(y) =
1

N − 1

N∑
k=1

(y(k)− ȳ))2, ȳ =
1

N

N∑
k=1

y(k),

RMSE =

√√√√ 1

N

N∑
k=1

(y(k)− ŷ(k))2, (34)

MaxAE = max
1≤k≤N

(|ŷ(k)− y(k)|). (35)

4. Experimental results

4.1. Simulation case study with known true model

The academic simulation benchmark system chosen for demonstrating the

effectiveness of the developed method is taken from [42]. It is a non-linear SISO

dynamic system given by the second order difference equation (36):

y(k + 1) =
y(k)y(k − 1)(y(k) + 2.5)

1 + y2(k) + y2(k − 1)
+ u(k) (36)

The input signal u(k) used for identification and validation is shown in Fig. 2.

It is an i.i.d random variable distributed uniformly in [−2, 2] and consisted of

N = 2000 samples. In order to increase stochasticity in the input signal, the

‘change probability’ - the probability with which the input value changes to a

new random value from its previous value - is introduced and the value is set to

0.5. The initial conditions are taken as y(0) = 0 and y(1) = 0. The data is split

into 50% for identification and the remaining 50% for validation. The output

of the original system is deterministic. To introduce variability in the output,

the output values are perturbed around its mean values by making it a random
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Figure 2: The input signal for the identification (left) and validation (right) data.

variable following a specific pdf. The deterministic output of the system (36) is

taken as the true output (y(k)). In reality this output time series is not available,

but it is demonstrated that the expected time series is a good estimate of the

true time series provided that the uncertainty is distributed symmetrically as

given in Eq. 37. With the output signal defined as yk, a random variable at the

time instant k, its pdf is computed as follows:

Pr(yk) = 0.5 · Pr1 + 0.125 · Pr2 (37)

+ 0.125 · Pr3 + 0.125 · Pr4 + 0.125 · Pr5,

Prl =
1√

2πs2
exp

(
− (yk − µl)2

2s2

)
, l = 1, . . . , 5,

µ1 = y(k), µ2 = 0.9 · y(k), µ3 = 1.1 · y(k),

µ4 = 0.8 · y(k), µ5 = 1.2 · y(k), s = 0.1

The input signal is repeated M = 100 times, resulting in a random sample of

output values of the size M at each time instant. For the sake of illustration, the320

normalized histogram (integral equals unity) of the output sample at k = 1000,

with the corresponding conditional pdfs (Pr(yk|yk−1, . . . , yk−ny , uk−τ−1, . . . , uk−τ−nu))

for each experiment (m = 1, . . . ,M), the mean output value (yexpk = 4.36) , the

true output value (y(k) = 4.41), confidence interval based the lower bound

(
¯
yk = 3.69) and the upper bound (ȳk = 5.02), is shown in Fig. 3.325

The value of α is chosen to be 0.25, which gives rise to 75% CI bounds and
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Figure 3: yk at k = 1000

the coverage factor kcov = 2.0258. It is remarked here that the bound obtained

using the extended Chebyshev’s inequality is conservative because it does not

take into account the distribution of data, but it is always guaranteed that

3/4th of the time, the value of the random variable yk lies within this bound,330

no matter what the distribution is. The distribution is chosen to be symmetric,

for the reason of the assumption that mean is the best point estimator. Recall

that, for a symmetric distribution, the most likely value or mode is same as the

mean. In the case of a asymmetric distribution, the most likely value is mode

of the distribution, which is not considered in this research. The output time335

series for the the identification and validation data is illustrated in Fig. 4. The

task is to estimate the lower and upper bounds of the response. Once they are

obtained, the mean time series can be computed by averaging them, according

to Eq. (14). The same quantities are used as the antecedent and consequent

variables, i.e. x̃(k) = z̃(k) = [u(k − 1), ỹ(k − 1), ỹ(k − 2)]ᵀ. The value of the340

fuzzy index is chosen as ν = 1.3, which is within the range suggested by [43] for

nonlinear identification problems. For having a parsimonious model, six clusters

(or local models) are selected for identification; further increasing the number
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Figure 4: The output signal for the identification and validation data

of clusters improves the modelling performance very slightly. The modelling

performance is shown in Table 1. As evident from the table, the model is345

able to estimate the mean time series and envelopes with good accuracy. To

visually inspect the modelling performance, the input signal and the output

envelopes for the identification and the validation data are shown in the Fig.

5. Further improvement can be done by either increasing the number of local

models, optimal selection of antecedent and consequent structure, and/or using350

the optimization algorithm to get the (sub) optimal (in the modelling sense)

sets of parameters.
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4.2. Electro-mechanical throttle

The developed method is demonstrated for the data recorded from the test

stand of electro-mechanical throttle shown in Fig. 6. The system is proposed355

as a benchmark problem for nonlinear system identification with friction [34].

Electro-mechanical throttles are standard components in diesel and Otto com-

bustion engines and are therefore widespread deployed. A phase optimized

multisine input signal proposed in [44], see Fig. 7, is chosen as input signal.

The amplitude and the offset of the multisine signal are determined in such a360

way that they should be able to excite all important operational system char-

acteristics as well as to avoid staying at the mechanical hard stop limits too

often. The length of experiment is selected to be N = 1000 and the experiment

is repeated 80 times (M = 80). The sampling time is chosen to be 1 ms which

adequately captures the dynamics of the given system. For simplicity, the model365

structure is utilized as used for T1 TS fuzzy modelling of the throttle in [34],

i.e., scheduling variable z̃ = [u(k−1), ỹ(k−1)− ỹ(k−2)]ᵀ, consequent variable,

x̃ = [u(k − 1), ỹ(k − 1), ỹ(k − 2)]ᵀ, the number of local models c = 8, and the

fuzziness parameter ν = 1.1. For having a parsimonious model, the value of c is

selected based on the knee point of JNOE - objective function containing MSE of370

NOE model - after which no considerable improvement in model performance

is observed. The value of α is selected to be 0.25 (for 75% CI). The first 90 %

Figure 6: Experimental test stand of electro-mechanical throttle
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of data (1 − 9 sec.) is used for identification and the remaining 10 % (9 − 10

sec.) for testing the model. The results for identification and test data are

shown in Fig. 8 and presented in Table 2. It is evident that the resulting model375

is able to reasonably capture the bounds and mean response. The maximum

error of 1.43◦ is observed in the case of estimating the upper bound (UB) for

the identification data, which is already considered within the reasonable limit.
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Figure 7: Multisine input signal for the throttle
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Figure 8: The reference and model time series for the identification (first 9 sec.) and

validation data (10-th sec.)
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Identification data Validation data

VAF 99.79 99.80

LB MaxAE 0.85 0.67

RMSE 0.11 0.11

VAF 99.89 99.84

UB MaxAE 0.72 0.69

RMSE 0.09 0.11

VAF 99.90 99.86

Mean MaxAE 0.70 0.70

RMSE 0.08 0.10

Table 1: Modelling performance for the Upper Bound (UB), the Lower Bound (LB)

and the mean time series for the academic example

Identification data Validation data

VAF in % 99.97 99.71

LB MaxAE in ◦ 1.29 1.36

RMSE in ◦ 0.62 0.55

VAF in % 99.98 99.78

UB MaxAE in ◦ 1.43 0.86

RMSE in ◦ 0.63 0.46

VAF in % 99.99 99.94

Mean MaxAE in ◦ 1.04 0.39

RMSE in ◦ 0.14 0.15

Table 2: Modelling performance for the Upper Bound (UB), the Lower Bound (LB)

and the mean time series for the electro-mechanical throttle
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5. Conclusion and outlook380

An approach to build models that can provide the expected response of an

uncertain nonlinear dynamic system along with the spread around it has been

presented and demonstrated for a nonlinear academic benchmark system and an

electro-mechanical throttle. The approach can use either the max-min bounds

or the extended Chebyshev’s inequality to obtain upper and lower bounds of the385

output time series based on the confidence interval. These bounds are directly

used in the TS fuzzy model using the theory of symbolic interval-valued data.

The developed model is referred to as the Interval-Data Based (IDB) Type-1

(T1) TS FM and its comparison with the other possible alternative model de-

scription are presented in this article. The model provides the estimates of the390

upper and lower bounds, whereas the mean response can be calculated by aver-

aging them. In the current approach, the IDB T1 TS FM directly uses interval

data in the modelling procedure by utilization the techniques of clustering and

regression of symbolic interval-valued data. Consequently, the obtained param-

eters are in the form of interval. The results show that the presented approach395

is able to adequately model the stochastic effects due to the variability in sys-

tem output in a unified efficient modelling framework. In future, some other

techniques for obtaining less-conservative and robust upper and lower bounds

from systems will be explored. Moreover, the extension of the current model

to the case of Interval-Data Based (IDB) Interval-Type 2 (IT2) TS FM will be400

investigated.
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[23] I. Škrjanc, S. Blažič, O. Agamennoni, Identification of dynamical systems470

with a robust interval fuzzy model, Automatica 41(2) (2005) 327 – 332.
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